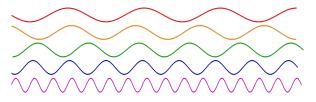


Geospatial Reasoning with shapefiles for Supporting Policy Decisions

Henrique Santos, James P. McCusker, and Deborah L. McGuinness

4th International Workshop on Geospatial Linked Data – GeoLD 2021

- Policies are commonly defined as domain-specific assets for supporting decision-making, specifying allowed or recommended actions under certain conditions (or rules)
- Largely published in natural language, but with increasing engagement in the development of computable policies
- They can be location-specific



Request

- Requester (device, service, system ...)
- Start and end time
- Location (geo-coordinates)
- Requested frequency (range)

Permit / Deny / Obligations

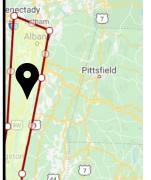
0 0

Spectrum manager

Dynamic Spectrum Acces (DSA) Policy Framework

Geospatial Reasoning with <code>shapefiles</code> for Supporting Policy Decisions 4^{th} International Workshop on Geospatial Linked Data – GeoLD 2021

Geospatial relationships


US161 In the bands 81-86 GHz, 92-94 GHz, and 94.1-95 GHz and within the coordination distances indicated below, assignments to allocated services shall be coordinated with the following radio astronomy observatories. New observatories shall not receive protection from fixed stations that are licensed to operate in the one hundred most populous urbanized areas as defined by the U.S. Census Bureau for the year 2000.

(a) Within 25 km of the National Radio Astronomy Observatory's (NRAO's) Very Long Baseline Array (VLBA) Stations:

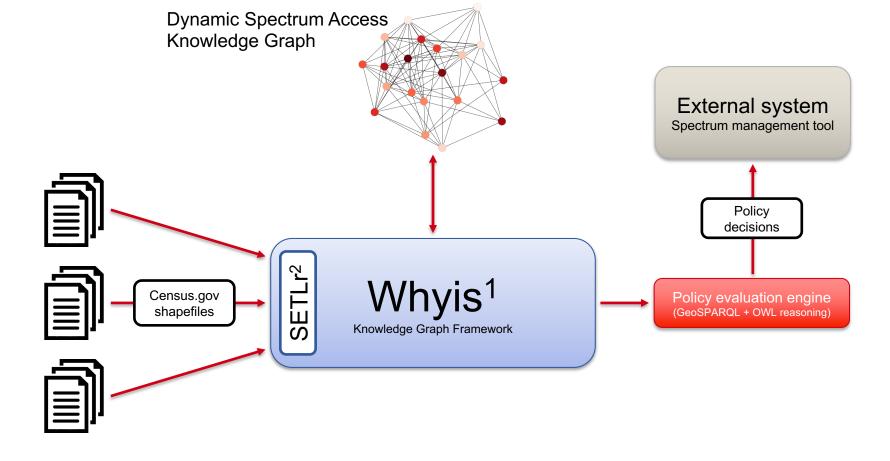
81

Google

State	VLBA Station	Lat. (N)	Long. (W)
AZ	Kitt Peak	31° 57' 23"	111° 36' 45"
CA	Owens Valley	37° 13' 54"	118° 16' 37"
HI	Mauna Kea	19° 48' 05"	155° 27' 20"
IA	North Liberty	41° 46' 17"	091° 34' 27"
NH	Hancock	42° 56' 01"	071° 59' 12"
NM	Los Alamos	35° 46' 30"	106° 14' 44"
NM	Pie Town	34° 18' 04"	108° 07' 09"
TX	Fort Davis	30° 38' 06"	103° 56' 41"
VI	Saint Croix	17° 45' 24"	064° 35' 01"
WA	Brewster	48° 07' 52"	119° 41' 00"

US91 In the band 1755-1780 MHz, the following provisions shall apply:

(b) In the band 1755-1780 MHz, the Federal systems listed below operate on a co-equal, primary basis with AWS stations. All other Federal stations in the fixed and mobile services identified in an approved Transition Plan will operate on a primary basis until reaccommodated in accordance with 47 CFR part 301.


(1) Joint Tactical Radio Systems (JTRS) may operate indefinitely at the following locations:

Keyboard shortcuts Map data @2021 Google Terms of Use Report a map error

State	Training area	Latitude	Longitude
AZ	Yuma Proving Ground	33° 12' 14"	114° 13' 47"
CA	Fort Irwin	35° 23' 19"	116° 37' 43"
LA	Fort Polk	31° 08' 38"	093° 06' 52"
NC	Fort Bragg (including Camp MacKall)	35° 09' 04"	078° 59' 13"
NM	White Sands Missile Range		106° 23' 10"
TX	Fort Hood	31° 13' 50"	097° 45' 23"
	Edison		

1. http://tetherless-world.github.io/whyis/

2. https://github.com/tetherless-world/setlr

Geospatial Reasoning with shapefiles for Supporting Policy Decisions 4th International Workshop on Geospatial Linked Data – GeoLD 2021

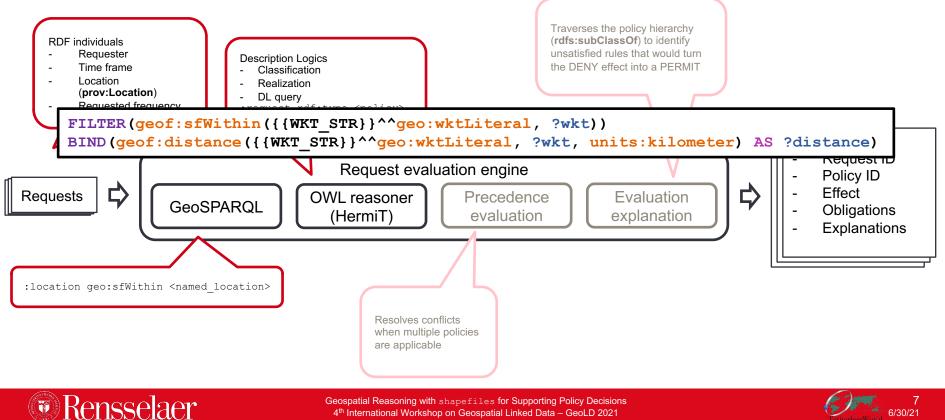
Representing policy location rules

(3) In the sub-band 1761-1780 MHz, Federal earth stations in the space operation service (Earth-to-space) may transmit at the following 25 sites and non-Federal base stations must accept harmful interference caused by the operation of these earth stations:

State	Site	Latitude	Longitude
AK	Fairbanks	64° 58' 20"	147° 30' 59"
CA	Camp Parks	37° 43' 51"	121° 52' 50"
CA	Huntington Beach	33° 44' 50"	118° 02' 04"
CA	Laguna Peak	34° 06' 31"	119° 03' 53"
CA	Monterey	36° 35' 42"	121° 52' 28"
CA	Sacramento	38° 39' 59"	121° 23' 33"
CA	Vandenberg AFB	34° 49' 23"	120° 30' 07"
CO	Buckley	39° 42' 55"	104° 46' 29"
CO	Schriever AFB	38° 48' 22"	104° 31' 41"
FL	Cape Canaveral AFS	28° 29' 09"	080° 34' 33"
FL	Cape GA, CCAFB	28° 29' 03"	080° 34' 21"
FL	JIATF-S Key West	24° 32' 36"	081° 48' 17"
HI	Kaena Point, Oahu	21° 33' 43"	158° 14' 31"
MD	Annapolis	38° 59' 27"	076° 29' 25"
MD	Blossom Point	38° 25' 53"	077° 05' 06"
MD	Patuxent River NAS	38° 16' 28"	076° 24' 45"
ME	Prospect Harbor	44° 24' 16"	068° 00' 46"
NC	Ft Bragg	35° 09' 04"	078° 59' 13"
NH	New Boston AFS	42° 56' 46"	071° 37' 44"
NM	Kirtland AFB	34° 59' 06"	106° 30' 28"
TX	Ft Hood	31° 08' 57"	097° 46' 12"
VA	Fort Belvoir	38° 44' 04"	077° 09' 12"
WA	Joint Base Lewis-McChord	47° 06' 11"	122° 33' 11"
GU	Andersen AFB	13° 36' 54"	144° 51' 22"
GU	NAVSOC Det. Charlie	13° 34' 58"	144° 50' 32"

```
Class: USLocation
 EquivalentTo:
    prov:Location and
      (geo:sfWithin value STATE 01 or
       geo:sfWithin value STATE 02 or
       ...)
  SubClassOf:
    prov:Location
Class: US91-2-c Location
 EquivalentTo:
    USLocation and (
    (geo:sfWithin value Fairbanks) or
    (geo:sfWithin value CampParks) or
  SubClassOf:
```

USLocation



Geospatial Reasoning with <code>shapefiles</code> for Supporting Policy Decisions 4^{th} International Workshop on Geospatial Linked Data – GeoLD 2021

Evaluating location-specific policies

T

Number of geographical features	915 polygons
Imported Census.gov datasets	STATE and MIL
Number of policies	96 policies
Number of involved physical radios	4 radios
DSA radios' rate of frequency change	Every minute
Number of transmission requests	450 requests
Number of calls to the evaluation engine	~23 calls
Number of transmission requests per call	~20 requests
Evaluation engine response time	< 10 seconds

Concluding... advantages of semantic approach

- Support the direct referencing of external geographical data sources within policy constructs
 - OWL classes that represent policies directly refer to geographical features, facilitating the policy authoring process
- Integrated domain knowledge base
 - As a knowledge graph composed by policies, locations, domain knowledge
 - Exploration by users
- Results of geospatial reasoning are leveraged during OWL reasoning
 - Policy evaluation engine fully implemented in a single platform
 - Use of standardized vocabularies and off-the-shelf reasoners
 - Explanation of results is possible by identifying rules that were not satisfied

Thank you!

Geospatial Reasoning with shapefiles for Supporting Policy Decisions

Henrique Santos, James P. McCusker, and Deborah L. McGuinness email: oliveh@rpi.edu

Pre-print: <u>https://tw.rpi.edu/web/doc/santos-geold-2021</u> DSA Policy Framework paper: <u>https://tw.rpi.edu/web/doc/santos-iswc-2020</u>

Geospatial Reasoning with shapefiles for Supporting Policy Decisions 4th International Workshop on Geospatial Linked Data – GeoLD 2021

